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1. Introduction

A close physical analogy exists between the phenomena of electroweak symmetry
breaking and superconductivity. In superconductivity the photon acquires a mass in
a gauge invariant way, while in electroweak symmetry breaking the W and Z bosons
acquire masses. Ginzburg and Landau [1] gave a phenomenological description of
superconductivity by introducing a complex scalar field with a potential that caused
the field to develop a Bose condensate, or in the nomenclature of particle physics, a
“vacuum expectation value” (VEV). Particle physicists recognize this as spontaneous
symmetry breaking in the abelian Higgs model. This is similar to the mode of de-
scription of electroweak symmetry breaking employed in the standard model in which
a weak isospin—1 Higgs field develops a vacuum expectation value. Fermions acquire
their masses from postulated couplings to the Higgs field and its VEV. Ultimately
in the case of the superconductor a realistic dynamical mechanism was discovered in
which the condensate of the scalar field is replaced by a condensate of dynamically
paired electrons, through phonon interactions, in the BCS theory [2].

Many physicists believe that the true symmetry breaking of the electroweak in-
teractions involves a dynamical mechanism in analogy to the BCS theory. The most
celebrated mechanism is that of technicolor {3] and involves a new strong interaction
that pairs techniquarks to form a weak isospin-; condensate. This is, in the earliest
version, a well understood dynamical mechanism for electroweak symmetry break-
ing, by analogy to the well-known chiral symmetry breaking in QCD, but it does
not account for the masses of quarks and leptons. To give masses to the elementary
fermions one must extend technicolor to a larger, broken symmetry group, known as
“extended technicolor” [4], and here one encounters difficulties. The key problem is
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that quarks cannot be too eavy 1n eéxtéiided techhicolor schemes without simulta-
neously generating large, urwanted«An§==-imrtersetions, thus too large a K; — K
mass difference. A naive estimate.of the.uppes.limit on a quark mass in standard ex-
tended technicolor is Mauars, S 100 MeV, In a more recent version, “walking extended
technicolor” (5], one mlght obi;a.m“Ia.rgél!a nidss€s, Miguare S 10 GeV. The top quark,
however, is now known to be more massive than 90 GeV [6]. This is a severe problem
for the technicolor scenarios which naturally favor a large electroweak breaking scale
and comparatively small fermion masses.

In the standard model the current CDF lower limit implies that the top quark
coupling to the elementary Higgs scalar is large, at least 20 times larger than that of
the b quark. The coupling constant, g = m./(175 GeV'), is now bounded below by
ge = 0.5. The fact that the top quark is an elementary fermion with a mass scale of
order the electroweak symmetry breaking scale suggests a dramatic new possibility:
the symmetry breakdown of the standard model may be a dynamical mechanism which
inttmately involves the top quark. To implement this idea we will postulate new
dynamics in which the top quark forms a condensate, for example (fLtg + h.c.), which
has the correct electroweak isospin—; quantum number. Thus, in this scheme the top
quark itself plays the role of a techniquark.

There is clearly much uncertainty in the specific new dynamics leading to top
quark condensation. As a first step toward a full theory one can implement directly
an effective Nambu-Jona-Lasinio (NJL) [7] mechanism in which an effective SU(3) x
SU(2) x U(1) invariant four—fermion interaction associated with a high energy scale,
A ~ G~'/3_ is postulated [8, 9]:

L = Lhinetic + G(T?tﬂa)(fzz‘l’m) (1)

where i runs over SU(2)y indices, (a,b) run over color indices, and Liinetic contains
the usual gauge invariant fermion and gauge boson kinetic terms. There is no elemen-
tary Higgs field in £. If G > 0 the interaction is attractive, and for sufficiently large G
the four—fermion interaction triggers the formation of a low energy condensate, (Zt),
which breaks SU(2) x U(1) — U(1). The bootstrapping of the symmetry breaking
mechanism to the top quark produces the requisite Nambu-Goldstone bosons associ-
ated with spontaneous symmetry breaking (which ultimately become the longitudinal
components of W and Z), and also a composite particle which behaves identically to
a fundamental Higgs boson at low energies.

By virtue of its economy this theory leads to new predictions which are testable in
the near future. In particular, we are able to derive renormalization group improved
predictions for mq,, and mpgigy, (the composite ¢ Higgs boson) in this scheme, and
we find, not surprisingly, that mq,p, is of order the weak scale. The results are very
weakly dependent upon A; for example, with A ~ 101® GeV we find in the minimal
scheme My, ~ 230 GeV and mpigy, ~ 260 GeV [9]. Yet another result, albeit not
experimentaly accessible in the foreseeable future, is that the nonminimal coupling of
the composite Higgs boson to gravity is determined, and we find the conformal value,



¢ =1/6 as a general consequence of compositeness in the NJL model [10].

Thus, this model differs from technicolor at the outset in implying that at least
one fermion, that associated with the electroweak condensate, must be heavy while
the others are light. The usual Cabibbo-Kobayashi-Maskawa mixing angle structure
and light fermion mass spectrum are readily accomodated, but predictions of mixing
angles and the light quark masses are not derivable until one specifies the dynamics
at the scale A more precisely. The usual one-Higgs—doublet standard model emerges
as the low energy effective Lagrangian, but with new constraints that lead to the
nontrivial predictions for myp, muigg, and £.

The NJL [7} model is conventionally treated in a large N, approximation, keep-
ing only the effects of fermion loops. We will summarize that treatment in the next
section. However, one can equivalently analyze the model using the renormalization
group (RG) exclusively. This involves studying the effective Lagrangian and the evo-
lution of its parameters as we vary the scale of physics, z. At the high energies,
g ~ G~12 our theory is described by the four—fermion interaction of eq.(1). At low
energies it contains a dynamical, composite weak isodoublet Higgs boson with self in-
teractions and a Higgs-Yukawa coupling to the top quark. We must then understand
how to “match” the low energy Lagrangian onto the high energy Lagrangian. The
conditions that define this matching are called the “compositeness conditions” [9, 11].
The compositeness conditions are equivalent to boundary conditions near the scale A
on the renormalization group equations. With the correct compositeness conditions
we easily recover the conventional NJL results in the large-N limit.

The compositeness conditions are actually more powerful; they may be applied to
the full theory, which goes beyond the large-N approximation and includes the effects
of gauge boson and internal Higgs boson lines, etc. Certain special renormalization
group trajectories, i.e., those satisfying the compositeness conditions, are thereby
associated with the existence of composite structure. These lead to the precise RG
improved predictions for msp, MHiggs, and £, which are very insensitive to the scale
of new physics, A ~ G~1/2 [9]. ‘

The composite theory is effectively a strongly coupled (Higgs-Yukawa and quartic
Higgs couplings) standard model near the scale A. The low energy predictions that
emerge are found to be governed in each case by infrared renormalization group fixed
points [12, 13]. In particular, compositeness is associated with the infrared fixed
points as formulated in ref.[13]. These fixed points are universal low energy values
of the coupling constants that arise from arbitrarily large values at high energies.
Because the low energy values are insensitive to a wide range of initial values, the
compositeness predictions are robust, and largely insensitive to the precise details of
the high energy theory. For example, the top quark is predicted to lie near 230 GeV
with the Higgs near 260 GeV, and ¢ = 1/6 for a composite scale within several orders
of magnitude of, A ~ 101® GeV.

How robust are the compositeness conditions and hence the predictions of a theory
as in eq.(1)? One can follow Suzuki [14], [15] and consider the sensitivity of the results



to the presence of generic higher dimension operators. Again, owing to the infrared
fixed points, the results are found to be very insensitive to higher dimension operators
(in ref.[15] arbitrarily large coefficients of these operators are allowed and it is claimed
that the infrared predictions of the composite theory can be modified; we will return
to this issue in section 4.2). It is important to realize, however, that the theory of
eq.(1) cannot be viewed as fundamental. One is therefore challenged to comstruct
models in which eq.(1) emerges as the effective theory at the scale A. With a wide
class of such models we can compute the strength of irrelevant operators.

We will give a discussion of a “topcolor” model in analogy to minimal technicolor
[16]. While minimal technicolor is a theory which naturally breaks SU(2) x U(1) but
leaves the fermions massless, minimal topcolor breaks the electroweak interactions
with a dynamical top condensate, while leaving all other quarks and leptons massless.
This may be a better point of departure for the construction of extended models in
which all quarks and leptons receive masses, however this is a new subject and we
will not pursue the development of detailed schemes in this paper.

In the end we face the fundamental problem of “naturalness,” i.e., how to evade
significant fine-tuning of the theory. We will summarize two avenues: (1) SUSY
generalizations of the minimal model [17, 18] in which supersymmetry protects the
gap equation from having to fine-tune large quadratic divergences; and (2) Fourth
generation schemes [19] in which the scale A is simply taken near ~ 1 TeV. There are,
of course, other logical possibilities, e.g., perhaps in some models various additional
states contribute so that A ~ 1 TeV becomes acceptable (see e.g., [20]).

2. Analysis in Fermion Bubble Approximation

The present discussion summarizes how the dynamical symmetry breaking mech-
anism through top quark condensation operates in the approximation of keeping only
fermionic loops, or, equivalently, to leading order in 1/N, with the QCD coupling
constant set to zero. The “bare” relationships emerge between the composite Higgs
boson, top quark and W boson masses. These relationships are only approximate, and
in Section 4 we will give the precise predictions, after abstracting the compositeness
conditions to the full theory.

2.1 Gap Equation

We will begin by summing the planar bubble diagrams in which the four-fermion
interaction of eq.(1) is iterated. We first consider the solution to the gap equation for
the induced top quark mass. The gap equation is a self-consistent Schwinger-Dyson
equation for an induced fermion mass term in the ground state of the field theory.
It is often useful to think in terms of a variational calculation of the Hamiltonian
expectation value in a trial groundstate wave—functional in which the elementary



fermionic excitations have a mass m(q?).

If a nonzero value of m(q?) can be found, then the Dirac sea is “pushed down in
energy,” and the nontrivial solution is the preferred solution of lower energy. In the
case of the NJL model we can easily obtain the induced mass gap m, in the presence
of a cut-off A in loop momentum. The gap equation is indicated in Fig.(1) and has
the form:

1 _

i A 3
26N s / d*1 (12 — m?)™ (2)
0

The result of evaluating eq.(2) with the momentum space cut—off A is:

- N,
Gl= P (A’— m? ln(A’/mf)) . 3)
which has solutions for sufficiently strong coupling, G > G. = 872/N_A? where G, is
the “critical” coupling constant.

Figure (1): The gap equation.

Essentially A is the scale at which the four—fermion interaction softens into some
kind of exchange potential (as in the “topcolor” model discussed in Section 5.) and
G = g?/A? involves a strong dimensionless coupling constant g. Hence we should
regard G and A as fundamental parameters of the theory and we solve eq.(3) for
m. Normally, for very large A, perhaps of order the GUT scale 10!® GeV, we would
expect the solution of this equation to produce a large mass, m, ~ A in the broken
symmetry phase. We see that a solution for m, ~ My, for such large A, constitutes
a fine-tuning problem in that G~ — G must then be very small. This we will see
below is the usual fine—tuning or gauge hierarchy problem of the standard model. The
gap equation contains a quadratic divergence, corresponding to the usual Higgs mass
quadratic divergence in the standard model. However, the fine~tuning problem will
be isolated in the gap equation, i.e., once we tune G to admit the desirable solution
we need cancel no other quadratic divergences in other amplitudes.



2.2 Scalar and Nambu—-Goldstone Modes

Let us now assume that the parameters, G, A admit a solution for m, to the gap
equation, eq.(2). We then consider the T-matrix element for the s—wave scattering
of t and £ in large-N, or equivalently, the sum of scalar channel fermion bubbles of
Fig.(2) as generated by the interaction eq.(1):

1 1 ... . =
L,(p) = =36 - (5G)% / dtz ¢ (T 7(0) T(2)) oy mectea + - (4)
We may sum this series to obtain:

1 1
I‘,(pz) = —EG [1 - 2GNC(—21I'T‘/ d4l (12 — ’l‘l'l.f)—1

z

—GN,(4m? — pz)(21r)4 / (1P —m2) Y ((p+1)? - mf)‘l] - (5)

Here the second and third terms in the denominator of eq.(5) come from a rearrange-
ment of the terms in the numerator of the Feynman loop-integral and a shift of the
the loop momentum for the fermions. We thus see that the first two terms in the
denominator cancel by virtue of the gap equation eq.(2). Thus, performing the loop
integrals we arrive at a result:

L") = 50 [(4m3 - #)(am) [ dotog { (e~ 22 - w)p’)}] S ®

I', is the propagator for the dynamically generated boundstate, a scalar composite
of #t. In particular, owing to the pole at p? = 4m2, we see that the theory predicts
a scalar boundstate with a mass of 2m, [7, 8, 9]. This is a standard result in the
Nambu-Jona-Lasinio model. We emphasize that this boundstate is the physically
observable low energy Higgs boson. At this stage the prediction holds only to leading
order in 1/N, in the absence of gauge boson corrections.



Figure (2): Sum of scalar channel fermion bubbles.

This physical particle is a boundstate of £, arising by the attractive four—fermion
interaction at the scale A of eq.(1). One might be inclined to think that this is a loosely
bound state, since it lies on the threshold for open it and apparently has vanishing
“binding energy” to this order. However, this is not a nonrelativistic boundstate,
and normal nonrelativistic potential model intuition does not apply. The 0t state is
present in the spectrum on all scales between 2m, and A, owing to the log(A?/p?)
behavior of eq.(6), and ceases to be a boundstate on scales 2 A.

The prediction mpg = 2m, cannot be viewed at this stage as a very precise one,
arising only in leading order in 1/N, and neglecting all other interactions. We will
give a more precise determination of its mass in Section 4, upon considering the full
renormalization group behavior of the complete theory.

Since this mechanism represents a dynamical breaking of the continuous SU(2) x
U(1) symmetry, it must imply the existence of Nambu-Goldstone modes. Moreover,
the symmetry breaking transforms as I = } and will produce the same spectrum of
Nambu-Goldstone bosons as in the standard model Higgs—sector. A massless pole

thus appears in the bubble sum for the neutral pseudo-scalar channel:
1 1 _.,. : - -
Ip(p?) = —-2-G - (EG)zz /d‘z e (T tv5t(0) t754(2)) .onmected T - (7)

By similar manipulations as in eq.(5) and use of the gap equation we find the result:

L) = 5 [(p’)(4vr)-’ " de 108 {(m o2 - w)p’)}] @



and the Nambu-Goldstone pole at p? = 0 is seen to occur explicitly.
Moreover, charged Nambu—~Goldstone modes appear in the flavored channels cor-
responding to the quantum numbers of the W boson:

(9)

connected

Ty = —3G — (;G)% / &tz &7 (T (1 +26)t(0) &1 — 2)b(2))

whence:

L) = gr [(p’)(4w)-’ [ el = )tog {87/((2 — =) —o(1 - z)f)}] —

» (10)
where we have assumed m; = 0.

2.8 Vector Bosons

Thus far we have considered only a conventional Nambu-Jona-Lasinio model for
the symmetry group SU(2) x U(1) in the absence of gauge fields. Now let us consider
the model with the gauge coupling constants restored. Of course, we have a dynamical
Higgs—mechanism and the gauge bosons acquire masses and longitudinal degrees of
freedom by “eating” the dynamically generated Nambu~Goldstone bosons. We obtain
a second prediction of the theory in the form of a relation between the W boson mass
and the top quark mass.

Consider the inverse propagator of a gauge bosons. We rescale fields to bring
the gauge coupling constants into the gauge boson kinetic terms, i.e., we write the
kinetic terms in the form (—1/4¢?)(F,,)?. The gauge boson fields should be viewed
as background classical fields and we thus need specify no gauge fixing at this stage.
Thus, for the W boson we have:

1 a1 i 7 3
=D¥ ()™ = S(pPupv — gwp®) + 3 / d'z <T Eu7be(0) b”“t"(z» (12)
g3 93 2

where g, is the SU(2) coupling constant. For the T-ordered product we again expand
in the interaction Lagrangian of eq.(1) and sum the planar bubbles, Fig.(3). We
assume the top quark has a mass satisfying eq.(2), and the gap equation is satisfied
in the loop expansion, which maintains the gauge invariance. This sum can thus be
written in terms of the flavor bubbles evaluated in eq.(10).
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Figure (3): Vector boson inverse propagator.

It is useful to write the induced inverse W boson propagator in the form:
1
g
Note the transverse structure of the inverse propagator reflecting the gauge invari-
ance of the theory. In effect, by integrating over the top and bottom quarks we have

integrated out the longitudinal mode of the W boson, which brings the inverse prop-
agator into the transverse form. The W boson mass is the solution to the mass—shell

W y—1 _ 2 _ 1 2 _ F3.2
Dy (p)™" = (Pupo /P’ — 9u) A" - (12)

condition: a
My, =p* = 33(")F (»%) (13)
while the Fermi constant is the zero-momentum expression:
Gr 1

v2  87(0) (14)
Note, therefore, that our normalization conventions relate £(0) to the standard model

Higgs vacuum expectation value v as follows: v = (Gpv/2)~Y/? = 246 GeV = 2F(0).
In the bubble approximation we find for one generation of quarks, ¢t and b:

1
T / dz 22(1 — z)
93 0

x log {A’/(zmg +(1—=z)m? —=z(1 - a:)pz)} (15)

and:
e = M [ " da (amd + (1 - £)m?)

x log {M/(:cmg +(1—2)m? —2(1— z)p=)} (16)



Analogous results are obtained for the neutral gauge boson masses. We may
consider the inverse propagator of the neutral gauge bosons as a 2 x 2 matrix of the

form:

y.-lg.D,‘lu(p)“ = 1/093 1/093 (9" = 99")
Lo T 53(0) 53(=)) (T 73(0) 73(=)
i f4 [Tj:(o)js(z)g gTja(om(w)g] o

where g is the U(1) coupling constant. Here the currents are the usual SU(2) and
U(1) neutral currents in the unmixed basis:

]z = IL"thL - ZL'VubL (18)
_ 1 _ 4, 2,
2 = E(tL'YutL + brv,.br) + E(tn’Yutn) - E(bﬂ'ﬁlbﬂ) (19)

and the numerical factors in the individual terms of ;3 are the U(1) weak-hypercharges.
Again we expand in the interaction Lagrangian of eq.(1.1) and sum the planar bub-
bles, Fig.(3). This can be evaluated to yield:

! D:u(p)—l = (1"‘1’”/1’2 - g"*) {[ l/g%(pz) l/g;(p’) ]Pz - |:__11 —11 :Ifz(Pz)‘}
)

9i9;

(2
where:
ol B G / "4z 22(1 - =) {gN log {A%/(m? — a(1 ~ 2)p")}
+ 2N, log {8¥/(m} — (1. - z)p=)}} (21)
and:
gf(;’) = gif + %(4#)-—2 Ll dz 2z(1 — z) {%Na log {Az/(mf —z(1 - a:)pZ)}
+ chlog {A’/(mf —a(l - :c)pz)}} (22)
Finally:

) = %N.=(41r)"2 / ' dz 2z(1 — z)p* log

mi — z(1 — z)p?
m? — z(1 — z)p?

1 1
+ 5N,;mf(41r)'2 dz log {Az/(mt2 —-z(1-— :c)pz)}
0

+ lN,,m,“,’(47r)"/1 dz log {Az/(mf - w(l - “’)Pz)} (23)

2 0



Note that f(p?) (f(p?)) may be interpreted as the decay constant of the neutral
(charged) Nambu—Goldstone mode.

At this stage of the approximation it is useful to note the quantitative prediction
for m, in terms of Gp. Eq. (14) combined with eq.(16) gives:

Fo = ‘/%GF ~ Nean)™ [ 1(1—z)mflog{A’/((1—m)mf)}(

R~ —-N (47) " *m2log{A?/m?} (24)

For example, with A = 10'® GeV one finds m; = 165 GeV. To what extent is this
an accurate prediction for m,? For one, it is valid only in leading order of 1/N, with
g3 = 0. This result, moreover, neglects the full dynamical effects of gauge bosons and
the composite Higgs boson, which should be included in the renormalization group
running below the scale A. We note that this result is substantially less than our full
Standard Model result as obtained in Section IV.

We also see that the gauge couplings are subject to logarithmic evolution between
the scales A and MW. We may write the low energy gauge coupling constants:

(0) == + N (4mw)~? {% log {A’/mf} + '3'108 {Az/mf}} (25)
and:
220) =tz N (4r)? {2_99 log {Aﬂlmg} + glog {A’/m:}} (26)

We also have the running of G, from the W boson propagator:

(O) 1 + N.(47)"? / dz 2z(1 — z)log {A’/(:nm,, +(1- z)mf)} (27)
The high energy renormalization group running of g; and g, implied by the net coef-
ficients of the log A in eq.(25) and eq.(27) is identical. Thus the high energy running
in the unbroken phase corresponding to momenta p? > m? will be consistently that
given by a single SU(2) gauge coupling constant. Moreover, the high energy running
of g, is consistent with a single generation quark—-doublet contribution to the usual

B—function:
o 22 N,

1
1672 gs = {—— + —n, + 11.;}92 (28)

dlnp 3 3 3

where ny (n;) is the number of quark (lepton) doublets. Thus, the coefficient of log A
in eq.(25) or eq.(27) corresponds to n, = 1 in the second term on the rhs of eq.(28),
neglecting the first and third terms in the fermion bubble approximation.

Similarly, the high energy running of g, may be read off from eq.(26) and again
is consistent with a single quark doublet contribution to the usual renormalization
group equation:

0]
16n 5 g, = {27qu +nz}91 (29)




The fact that we obtain the normal renormalization group running of these cou-
pling constants from the single iso-doublet of quarks (neglecting all other contribu-
tions, such as gauge boson loops) indicates that the low energy effective Lagrangian
at this order is just the standard model. The further renormalization effects below the
scale m, are radiative corrections that show up at low energy, e.g., neutrino scattering
for Q* < Mj},. These involve, essentially, the extrapolation from the on—shell W and
Z masses to the low energy measured sin? fy and Gp. Does the model lead to new
effects here? We see, for example, that:

£2(0) = %Nc(41r)" {mitog {A*/m2} + m}log {A*/m3 ]} (30)
and:

F(0) = N.(4r)? / ' do {wm3+(1 —c)m?}log{A*/(zmH(l—z)m':‘)}

720 + Xegamys {mf md - ﬁT”‘f-’i‘j;,-log(mz/mf)} (51)

i

Veltman’s p parameter is just p = F(0)/f2(0) and thus the difference in f(0)? and
f(0)? is just the usual correction to the p-parameter due to weak isospin breaking
effects and arises as a radiative correction to many physical processes. There are thus
no additional corrections associated with the dynamical symmetry breaking mech-
anism beyond the usual standard model results. This is analogous to well known
results of Carter and Pagels [21] for other dynamical symmetry breaking schemes
such as technicolor.

This completes the discussion of the theory in the fermion bubble approximation.
We turn now to an equivalent, but more transparent and ultimately more powerful
discussion using the renormalization group and effective Lagrangians.

3. Low Energy Effective Lagrangian
3.1 Induced Higgs Scalar

In the previous section we derived the low energy effects of dynamical symmetry
breaking provided by a sufficiently attractive four-fermion interaction involving the
top quark as defined in eq.(1). We considered a model based on a conventional sum of
the fermion bubble diagrams associated with the leading large— N, limit with g; = 0.
This simple model generates dynamical masses for the top quark and gauge bosons
of the standard model, as well as a bound state corresponding to the usual physical
Higgs scalar of mass 2m,. The fermion bubbles yield their conventional contribution
to the running of the gauge coupling constants and the explicit cut—off dependence
can be absorbed by appropriate renormalization of these couplings. The effective



Higgs vacuum expectation value, o< f(0), has the normal isospin structure related to
the p parameter but remains sensitive to the cut—off A as its dependence cannot be
absorbed by renormalization. Our calculations imply that the effective low—energy
dynamics is, in fact, just the usual standard model with certain constraints on the
fundamental parameters of the theory.

We can see explicitly the connection with the standard model by using a Yukawa
form of the four-fermion interactions as defined at the cut—off scale A, through the
help of a static, auxiliary Higgs field, H {22]. We can rewrite eq.(1) as:

L = Liinetic + (WLtRH + h.c.) — mﬁH*H (32)

If we integrate out the field H we produce the four-fermion vertex as an induced
interaction with G = 1/m}. Note that only nontachyonic m3 > 0 implies an attractive
interaction and allows the factorization in this form.

Eq.(32) is the effective Lagrangian on a scale A. To obtain the effective Lagrangian
on a scale # < A in the fermion bubble approximation we integrate out the fermion
field components on scale p — A as in Fig.(4):

\ , ' graviton
Figure (4): Block-spin renormalization group including only fermion loops.

The full induced effective Lagrangian at the scale u then takes the form:
L = ‘ckiuet:'c + TI’-I;tllt[ + h.c. + Aﬁgauge
+Zg|D H —mLH'H — %(H*H)2 — tRHH (33)

where D, is the gauge covariant derivative and all loops are now to be defined with
respect to a low energy scale u. Here AL, ;. contains the fermion loop contribution
to the renormalization of the gauge coupling constants. We include an induced non-
minimal coupling of the Higgs boson to gravity, £, [10]. A direct evaluation of the
induced parameters in the Lagrangian gives as in Fig.(4):

N, 27,2y, 2 _ .2 2N. ;.3 2
Zg = (4;:2,108(1\ /%) mx—mo—(4,r)z(A —1*)
2N, 2/ 2y, _1 N, 3, 2
o = (41r),los(A /6*); éo—g(‘m),log(l\ /1) (34)



The Lagrangian of eq.(33) is, apart from normalization, exactly the same as the usual
low energy standard model, except that the induced parameters, Zg and Ao, and &
are determined. Note that they all have an explicit dependence upon A, vanishing
when g — A.

We emphasize that the effective theory applies in either the broken or unbroken
phases. The broken phase is selected by demanding that m% < 0 for scales u < A,
thus requiring that m2—2N.A?/16%? < 0. This is equivalent to tuning the gap equation
to produce the low energy dynamical symmetry breaking, i.e., G > G. = 8x?/N_A?
since G = 1/m?. On the other hand, for positive m} as p — 0 the theory remains
unbroken (this is equivalent to a subcritical four—fermion coupling constant, G < G.)
and a massive Higgs boson doublet remains in the spectrum as a composite state.

Let us bring the effective Lagrangian of eq.(33) into a conventionally normalized
form:

L = L:kinetic + gt-\thRH + h.c. + Acgauge
+|D H* - miH'H - ;\-(H*H)’ —¢RH'H (35)
by rescaling the field H — H/\/Zy. We then find:
g7 = 1/Zy = 167*/N_log(A?/u?)

my = my/Zn (36)
A = Xo/Z} =321/ N.log(A?/u?)
§ = b/Zn=1/6

These are the physically normalized coupling constants, and after fine-tuning the
low energy value of m% to obtain the spontaneously broken phase, the remaining
predictions of the model are contained entirely in g;, A (and €) as we will see below.
The compositeness of the Higgs boson essentially implies the results that g, and A
become singular as g — A (while ¢ remains constant and equal to its conformal value
of 1/6). We will refer to these as the “compositeness conditions.”

It is, however, instructive to see that these results are easily recovered directly
from the conventional, differential renormalization group equations, supplemented
with the compositeness conditions as boundary conditions. We utilize the partial
B-functions which reflect only the presence of fermion loops:

a
161‘-2 aln”’gt = Ncgta (37)
1672 3111;4’\ = (—4N.g; + 4N.g})) (38)
Solving eq.(37) gives:
1 1 N, 2, 2
A " @)~ Te ) )



If we now use the boundary condition, 1/g7(A) = 0 we see that we recover eq.(36)
for g?. Eq.(38) may then be solved by hypothesizing an anzatz of the form A = cg?.
Substituting into eq.(38) one finds:

d

1672
i Olnp

1
ge = %(46 — 4)N.g:° (40)

and demand that this must be consistent with eq.(37). Thus one finds ¢ = 2 and:

1 1 N
Ae)  A(A) 322

In(A?/4?) (41)

and again 1/A(A) = 0 leads to the result of eq.(36) for A.
Now, to obtain the usual phenomenological results of the NJL model we examine
the low energy Higgs potential from eq.(35) with g = m,:

V(H) = —myH'H + %(15{*1{)2 — (0¥ rtrH + h.c.) (42)

Let us assume that m} < 0 so the neutral Higgs field develops a VEV: Re(H®) =
v+¢/+/2. In the standard model we assume that v has been fine-tuned to the physical
value of v? = 1/24/2GF = (175)2 GeV.

Therefore we find the top mass:

me = gvv; (43)
and the ¢ mass:
mi = 2v3) (44)
and so:
m3/m? = 2A/gf = 4 (45)

where we use the explicit solutions eq.(39) and eq.(41) for A/g? = 2. This is the
familar NJL result, my = 2m,. Moreover, we have:

1
2v2GFr

which is equivalent to the prediction obtained from a direct fermion bubble approx-
imation computation of the decay constant. We have seen that the RG directly and
simply reproduces the result of a “brute force” summation of fermion bubbles.

It is also amusing to study the result £ = 1/6 in the differential renormalization
group. The RG equation for é = £,/Zy can be derived by considering,

8, _ 8t 8(Zx)
dlnp> ~ dlnp Olnp

ch In(A?/m?) =

167 (46)

2 _ 2 3 __ 2
v’ =m;/g; =m;

/2 — & /2. (47)




In the fermion bubble approximation, we know from eq.(36) that g? = 1/Zy and
hence,

2 —
167w g g2 = 2Ng}. (48)
Eq.(47) then becomes,
a N
161rzaln”£ = ——3—93 +2N¢g2, (49)
and the solution for the curvature coupling parameter,
() =1/8, (50)

is a constant for all scales. More generally, as one descends toward the infrared,
¢ = 1/6 is an attractive fixed point. Therefore, no matter what is the initial value for
¢ at the large scale A, given enough RG running time ¢ will eventually reach 1/6 for
small p. Of course, the RG running only occurs for scales g > mpg.

We thus find in the usual fermion bubble approximation that ¢ is conformally
coupled to gravity, even though scale breaking dynamics exists at high energies A.
Moreover, ¢ = 1/6 is an attractive renormalization group fixed point in the infrared
in this approximation. This implies that, even if there are corrections to ¢ = 1/6 from
irrelevant operators at A, the observed low energy coupling is quickly attracted to a
physical or “observed” value of £ = 1/6 as one evolves into the infrared. Remarkably,
even when more physics is included beyond the simple fermion bubble approximation
by using the full one-loop renormalization group, this result persists. This is closely
related to previous results which analyzed the RG behavior of ¢ for large curvature
[23].

3.2 Ladder QCD

We can now take a step closer to the full theory by including the effects of gluons
in the RG equations [24]. This analysis illustrates again the power of the renormal-
ization group in reproducing the results of this approximation. This is not yet a
full improvement over the fermion bubble results, since obviously the ladder QCD
calculations omit the propagating Higgs boson, as well as electroweak effects which
are included in the full RG equations below.

We now have, including only the effects of fermion loops and gluons in loops:

1672 alnﬂ-gt = N.g® — (N2 — 1)g3g:; (51)
1672 Yy —(11 — 2n;/3)g3; (52)
167? A = (—4N.g; + 4N.g2)). (53)
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Notice the additional QCD term in eq.(51) in comparison to eq.(37). The equation
for A is unchanged at this oneloop (leading log) order. Again, the UV boundary
conditions on the theory are as before, g, — co and A — o0 as p — A. It is most
convenient to obtain these results numerically, and they are indicated in Table I for
various values of A. We see for the first time the appearance of the nontrivial RG
infrared fixed point for g; at this stage [13].

4. Fully Improved Renormalization Group Solution
4.1 Infrared Fized Points

To obtain the full renormalization group improvement over the Nambu-Jona-
Lasinio model we may utilize the compositeness boundary conditions on g, and A and
the full B-functions (we’ll neglect light quark masses and mixings) of the standard
model. To one-loop order we have:

1607 o= (Mot o~ (N2 =)o~ o~ To)or (50
and, for the gauge couplings:
16m? =0 % = —¢ g (55)
Olnpu
with 1 20 43 4 4
e =—z= TS—N,; =5 = -3-Ng; c3=11— §N9 (56)

where N, is the number of generations and ¢ = Inu. The principle differences in
eq.(37) relative to eq.(54) are: (i) inclusion of the propagating dynamically generated
Higgs boson in loops (the additional 3/2 in the coefficient of ¢7) and (ii) the inclusion
of electroweak effects.

The precise value of the top quark mass is determined by running g,(x) down
from a given compositeness scale A at which g;(A) = oo, or in practice, is large.
The evolution ends when the mass—shell condition g¢(m:)v = m, is reached. We will
not discuss possible low energy corrections associated with the extra.pola.tlon of the
symmetric three-point function to a zero-momentum Higgs line.

The nonlinearity of eq.(54) focuses a wide range of initial values into a small
range of final low energy results [12, 13]. The solution for mayark = ge(£)v is shown in
Fig.(5) for A = 10'® GeV (case A) and A = 10'® GeV (case B) respectively. This is a
“quasi” infrared fixed point, which would be an exact fixed point if g3 were constant.
The interpretation of the fixed point behavior is that of [13]. The fixed point is a
reflection of approximate scale invariance (vanishing @ function) of the theory as we
tune the gap equation to produce m; < A. The scale invariance is explicitly broken

by AQCD-
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Figure (5): Full RG trajectories as a function of scale u. (A) A = 10%®
GeV; (B) A = 10" GeV. The composite trajectories diverge at the cor-
responding value of A. The predicted mgyqrx is controlled by the quasi-
infrared fixed point and is very insensitive to A [9], [13].

The quasi—fixed point behavior implies that m, is determined up to O(Inln A/m,)
sensitivity to A. In Table I we give the resulting physical m,, obtained by a2 numerical
solution of the renormalization group equations as a function of A. Note the sensitivity
to A is reduced when the nontrivial IR fixed point is present.

The Higgs boson mass will likewise be determined by the evolution of A now given

by:

V]
2 — 2 2 _ 4
167 _alnp./\ 12(A* + (g — A)A + B — g*) (57)
where: 1 3 ) ) 5
= —ag.2 4 Zg.2. = gt L 220,24 2 4
A= e + 297 B T + g91 92 + 69 (58)



There are now significant modifications in eq.(57) relative to eq.(38) due to the in-
clusion of virtual Higgs propagation (the first term on the rhs) and electroweak in-
teractions. As in the case of g;, we evolve A(u) from the compositeness scale A down
to the weak scale with the compositeness boundary condition, Alp = A) = oo. The
joint evolution of g, and A to the RG fixed point is shown in Fig.(6), and mp is given
in Table I including the full RG effects.

A (GeV) 10 | 10 | 10 | 107 | 10°
m, (GeV); Fermion Bubble® | 144 | 165 | 200 | 277 | 380
my (GeV); Planar QCD® | 245 | 262 | 288 | 349 | 432
m. (GeV); Full RGP 218 | 229 | 248 | 293 | 360
mz (GeV); Full RGP 239 | 256 | 285 | 354 | 455

Table I: Predicted my,, in three levels of increasingly better approxima-
tion as described in the text. “Fermion Bubble” refers only to the inclu-
sion of fermion loops, equivalent to the conventional Nambu-Jona-Lasinio
analysis, in which case myg = 2m,. “Planar QCD” includes additional ef-
fects of internal gluon lines. All effects, including internal Higgs lines and
electroweak corrections, are incorporated in the “Full RG” lines, and we
include the myg results. Notice that the full renormalization effects cause
mpg # 2m,. Results (*) are from Mahanta and Barrios, [24] and (%) are
from [9].

4.2 Sensitivity to Irrelevant Operators

The action of the effective fixed point appears to make the top quark and Higgs
boson mass predictions largely insensitive to the precise values of the coupling con-
stant close to the scale A [12, 13]. Indeed, there may be real physical effects which
modify the high energy boundary conditions. These effects may be due to the pres-
ence of normally irrelevant, higher dimension operators, or higher order corrections to
the four fermion interactions at the scale A which are not already contained in the full
renormalization group analysis. The higher dimension operators were first considered
by Suzuki [14], and his analysis has been generalized by Hasenfratz et al. , [15]. How
sensitive is the infrared physics to these model-dependent effects at high energy? We
will show that these “Suzuki effects” are in fact rather small for a reasonable range
of the coefficients of these new operators.
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Figure (6): Full RG trajectories showing joint evolution of g, and A for
various initial values. Compositeness corresponds to large initial g; and A,
and these are attracted toward the nontrivial IR fixed point (solid circle).

We take our starting point Lagrangian, eq.(1), to be modified as
_ —ia X ia " b X b n
L= Lkiﬂetic+G (‘PL tra + 'A—z(Dy‘I’L )(D tRa)) (tH‘I’Lib + F(Dptﬂ)(p ‘I’ibL)) (59)
hence eq.(32) is similarly modified:
=ia X =ia
L = Liuinesic + ((\I'L tra + 25(D,TE)(D"tra)) Hi + h.c.) —~MH'H  (60)

Now, we perform the block-spin RG transformation as in section 2.1. we obtain
the low energy effective Lagrangian in analogy with eq.(22):

L = Lginetic + ((F; traH; + h-C-)
+Z5|D,H — MAH'H — %(Hfﬂ)2 + O(1/A%).. (61)



where now the parameters transform as:

N.
Zn = g5 (IA/m) = x + x°/8) (62)
— _& 3 2 2 3 1 4
Ao = 472 (ln(A/f") 2x + 2X —3X + 3X ) (63)

and M2 has additive terms which we will fine-tune as above.

To obtain the low energy predictions the renormalizaton group equations are mod-
ifeid by physics near the scale A which depends upon y. At scales far below A the
usual renormalization group equations apply with modifications of the high energy
boundary conditions. We incorporate these effects by using exact results for large N
at scales 4 ~ A as given in eqs.(62, 63), but then use the full RG analysis at lower
energies where the higher dimension operators decouple.

The following procedure has been adopted to explore the sensitivity to x: (i) from
p=Atop=p"=A/5we use eq.(62) and eq.(63) directly to evolve Zg and Ag; (ii)
from p = p* to p = m, we use the RG equations. The sensitivity of the low energy
predictions is shown in Fig.(6) for the three cases: (1) fermion bubble approximation;
(2) ladder QCD; and (3) full standard model. The most sensitive case is that of
fermion loop approximation since we see that there is no real nontrivial fixed point
to the RG equations in that case. For a wide range of x the planar QCD and full
standard model predictions are very insensitive owing to the nontrivial fixed point for
large g, which is rapidly approached.

Recently Hasenfratz, et al. [15] have generalized the Suzuki analysis by including
a complete set of higher dimension four fermion interactions. They show that these
interactions can cause independent, finite shifts to the values of Zg and \,. With
arbitrarily large coefficients of the higher derivative interactions they claim that any
physical prediction for m.,, and MHiggs can be obtained. They conclude that the
top condensate theory is unpredictive and that a very light top quark is therefore
consistent with the electroweak symmetry breaking coming only from short range
interactions of the elementary fermions.

The results of Hasenfratz et al. are only demonstrated in the fermion bubble ap-
proximation, in which they are true mathematically, but require unphysically large
values of the coefficients of the new operators for their conclusions to apply. They
require that the finite corrections at the high energy scale dominate the large log-
arithm arising from the evolution to the weak scale. Moreover, the focusing effects
of the infrared fixed points are ignored by considering only the fermion bubble ap-
proximation, and these effects will further stabilize the predictions as we have seen
previously. As we have demonstrated, the actual results are, in fact, very insensitive
to these corrections if the coefficients of the new operators are O(1).

The ultimate issue of the size of the residual corrections to the leading four-
fermion operator resides in the nature of the parent theory, which is valid on scales
> A. In a full, realistic theory in which the interactions at the scale A are generated



dynamically we can hope to compute x. We turn to this possibility in the next
section. In the following we consider one such model, and indeed it is found in ladder
approximation that there are residual corrections, but these are very small (we find
X ~ 0.1 rather than x ~ 10 which is required for any significant impact on the low
energy predictions) We refer the reader to ref.[16] for the details of this estimate.
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Figure (7): Sensitivity of predicted m,, (solid lines) and mg;gy, (dashed
lines) to d = 6 operator coefficient x.



5. Top-Color: A Gauge Theory that makes a Top Condensate

The interaction introduced in eq.(1) is clearly only an effective description of a
more primitive theory. A Fierz rearrangement of the interaction leads to:

e _ ) _ M )4
(P2tra)iCrsd’)’ — ~(Purr 5 ¥5)(Enr" 5 ta) + O(1/N) (64)

where N = 3 is the number of colors. This form strongly suggests a new gauge theory
leading to a current—current form of the effective Lagrangian. We further note that:
(i) this gauge theory must be broken at a scale of order A; (ii) it is strongly coupled
at the breaking scale; (iii) it involves the color degrees of freedom of the top quark
(or fourth generation fermions) in a manner analogous to QCD. The relevant models
will involve the embedding of QCD into some large group G which is sensitive to the
flavor structure of the standard model.

Let us construct a minimal version of such a theory. We presently seek a gauge
interaction which leads to a term as in eq.(2) but which, like minimal technicolor, will
leave the light quarks and leptons massless. A subsequent extension of the theory is
required to give masses and mixing angles to light fermions, and we do not address
this issue at present. Therefore, consider an extension of the standard model such
that at scales 4 > A, we have U(1) x SU(2)z x SU(3); x SU(3);. We assign the usual
light quark and lepton fields to representations under (SU(2), SU(3),, SU (3)2) such
that they transform as singlets under the new SU(3),, as follows:

(u, d)z; (¢, 8)p — (2,3,1)

(Vev e)L; (V,‘, I‘)L; (V-r, T)L - (271’1)
UR, dRs CR, SR, bp — (113v 1)
€Rr, KR, TR, (ViR) —* (1’1’ 1) (65)

while the top quark is a singlet under the first SU(3), group:
(¢, b)) — (2,1,3); tr — (1,1,3) (66)

This assignment is not anomaly free, and we can minimally realize all anomaly can-
cellations provided we introduce the following electroweak singlet quarks:

Qr—(1,1,3); Q1 —(1,3,1) (67)

Both Qr and @ have weak hypercharge Y = —2/3, hence electric charge Q = -1/3.

Since we wish to break the symmetry SU(3), x SU(3); — SU(3). at the scale A,
we introduce a scalar (Higgs) field ®§ which transforms as (1,3,3). By the simplest
choice of the & potential a VEV develops of the form: (&) = diag(A,A,A). This
VEV breaks SU(3), x SU(3); to a massless gauge group SU(3), with gluons, AZ and
a residual global SU(3)’ with degenerate, massive gauge bosons (“colorons”) B4,



@ must be given a large enough Dirac mass, 2 A, so that it does not further in-
fluence the dynamical symmetry breaking. We invoke a large Higgs—Yukawa coupling
of the ® field to the combination Q;Qg. Thus, if we take:

£® Q7 Qry + h.c. (68)

then @ receives a mass of KA. A lower bound on & will be estimated below such
that the @ field may be approximated as having decoupled at the scale A. It should
be noted, however, that with the given the quantum numbers of QQ there is an
intriguing possibility that in extensions of this scheme the (QQ) condensate may
form dynamically breaking SU(3), x SU(3); — SU(3)., so that an explicit ® field
may not be required. For example, if we assign instead (¢, s)r — (2,1,3), we find
that anomaly cancellation requires the @ be a triplet with Y = 0! Gauging this triplet
with yet another SU(3); allows a QCD-like chiral condensate of the form {QQ ) which
is (1,3,3), and the symmetry breaks as described here. This model leads to a low
energy two-Higgs doublet scheme.

Returning to the simple example, let the coupling constants of SU(3), x SU(3);
be respectively kb, and hj. Then the gluon (A#) and coloron (B) fields are defined
by :

A2 = cos OAﬁ — sin GB:

1
Aj, =sindA4 + cos B} (69)
where:
hycos0 = ga; hasind = ga; (70)
and thus:
0 = h/hy; 1 _1 1 71
tan —-1/2, g—g'—rg"*'?;; ( )

where g3 is the QCD coupling constant at A. In what follows we envision h; > h,
and thus tand < 1 to select the top quark direction for condensation. The mass of
the degenerate octet of colorons is given by:

2g3
_ 2 z) —
Mg = ( hi+hi A= (sinZﬂ)A (72)

The SU(3). current will be the usual QCD current for all quarks while the SU(3)’
current (multiplied by its coupling strength) takes the form:

. S S Y v
h, = gacotd t7p?t+bb7u7bL+QR7u?QR

)4 — o\ A4
+g3tand (bﬂ'r“—z—bﬂ“" QL7“—2‘QL+ E qm.?q;) (73)



where the sum extends over all first and second generation quarks. If h, > ki the
dominant coloron mediated interaction takes the form of eq.(1) provided we identify:

2 2 2 2
g9° _gicot’d  cos*d
AT M T A (74)

Let is now ask what condition on # implies dynamical symmetry breaking through
the formation of a top condensate. The scale at which the four fermion interaction
softens to a gauge boson exchange is given by the mass of the coloron Mpg, and we
may treat the effective interaction as a four—fermion form at all scales p < Mp.
Therefore, in the large-N approximation the gap equation can be written for the
spontaneous formation of the top—condensate with a momentum cut—off taken to be
~M B [9]:
93N cot? 8
8mIMpE

and the existence of the condensate implies:

mMe = My

[M3 — m} 1og(a3/m})] (75)

2 2
Msg-ﬂ >1  or é:—’r-ag(MB)cotzﬂ >1 (76)
where a3 = g3/4w.

On scales below the Mp we expect that the analysis of ref.[9] holds. If Mg 3> My
then to have an acceptable top mass we must fine-tune 6 so that %aa(M B)cot?f =~ 1
to a high precision. It is also crucial that the spectator @ be sufficiently heavy so
that a $Q condensate does not form (the custodial SU(2)z leads to problems with
extra unwanted Goldstone bosons and may ultimately break U(1)ga). For a heavy
fermion in the gap loop a sufficient condition that no breaking occur in this channel
is:

K > my/(Mp log(Mp/m.)) (77)
provided the mixing angle is fine-tuned to produce the low mass top condensate.
Essentially this condition insures that Q decouples and the associated quadratic di-
vergence becomes A? — M3, and the interaction has insufficient strength to drive the
condensate.

In related works, possible horizontal interactions have been considered by T. K.
Kuo, et al. , and a U(1) version of this scheme is being developed by R. Bonisch,
and independently by M. Lindner and D. Ross [25]. We refer the reader to [16] for a
discussion of the size of x in these models, which is generally found to be small.

6. Supersymmetric Models of Top Condensates

We can construct a minimal supersymmetric extension of the standard model
in which electroweak symmetry breakdown involves formation of condensates of the



third generation of quarks and their supersymmetric partners. The top quark mass is
then obtained as a function of the compositeness scale A and the soft supersymmetry
breaking scale, Ag. When A ~ 10'® GeV, the characteristic top quark mass in this
model is 140 GeV < m; < 195 GeV, a prediction that is only slightly dependent
on the value of Ag. Supersymmetry provides a possible solution to the naturalness
problem since above the SUSY breaking scale the quadratic divergences disappear,
and hence no large fine tuning of the four Fermi coupling constants, or in general of
the Higgs mass parameters, is required [17]. Hence the previous cut—off A? is replaced
by A% which can, in principle, be near the weak scale.

The minimal supersymmetric extension of the composite-Higgs model was first
studied in Ref.[17], in a simplified version in which only one of the scalar Higgs dou-
blets acquires a vacuum expectation value, and hence, the bottom quark remains
massless. The resulting infrared quasi-fixed point value of the top Yukawa coupling
is slightly lower than in the case of the standard model. However, in a generalized
scheme with two Higgs VEV’s [18] in which the b quark acquires mass the top quark
mass values can be significantly lower than those obtained in Ref.[17]. An impor-
tant consequence of these radiative effects is to invalidate previous phenomenological
constraints on the ratio R of the Higgs vacuum expectation values, and hence, lower
values for the top quark mass are allowed within the model. Modifications to the top
quark mass predictions induced by the appearance of a finite bottom quark Yukawa
coupling is relevant.

6.2 Renormalization Group Flow of the Low Energy Parameters.

To describe the dynamics responsible for the top quark multiplet condensation,
we shall consider an SU(3) x SU(2) x U(1) invariant gauged supersymmetric Nambu-
Jona-Lasinio model [17], [18], with explicit soft supersymmetry breaking terms. In
this simplified model we ignore all quark and lepton Yukawa couplings except one
associated with the top quark, since they are inessential for the qualitative description

of the phenomena under study.
Written in terms of the two composite chiral nggs superfields H; and Hj, the
action of the gauged Nambu-Jona-Lasinio model at the scale A takes the form

T = Tym+ / aV [QetVeQ + T T + B B°| (1 - A%°F)
+ /dVHlez"Hz Hy(1 - M%46°3%)
- /dse,, moHIH’(1+B(,02) on HJQTO(1 + 408
_ / dSe; (moH1H§(1+B°0) o, TCQHI (1 + A8 )) (78)

where Q@ = (g) is the SU(2) doublet of top and bottom quark chiral superfield



multiplets, 7¢ (B€) is the SU(2) singlet charge conjugate top (bottom) quark chiral
multiplet, and we have denoted the superspace integration measures dV = d‘zdﬂzdﬁz,
dS = d*zd§? and dS = d*zd§" [26]. An equivalent form of the above action, only in
terms of the fundamental quark chiral superfields, can be obtained by integrating out
the static composite chiral superfields, or equivalently, by substituting in Eq.(78) the
fields H; and H, in terms of their Euler-Lagrange equations. T'y s includes the usual
supersymmetric gauge field kinetic and the supersymmetry breaking gaugino mass
terms, while the quark and Higgs multiplets interact with the SU(3)xSU(2)xU(1)
gauge fields via

61 a il i 1 al e 2
Ve = g3G 5% — 24, Vu, = -21W o'~ ZaY. (79)

We have included two soft supersymmetry breaking terms Ao and B, which are pro-
portional to the scalar trilinear and bilinear terms appearing in the superpotential.
The gauged Nambu-Jona-Lasinio model depends only on § = Ay — By, as can be
easily verified by integrating out the chiral Higgs superfields. The inclusion of the
6 induced terms in the low energy theory is essential in order to obtain nontrivial
vacuum expectation values for both neutral scalar Higgs particles without inducing
an unacceptably light axion [27]. A? and M% provide explicit soft supersymmetry
breaking scalar mass terms.

It follows from the H; Euler-Lagrange equations that the scalar component of the
H, chiral superfield and the quark superfields are related by

moH; = gr, 6T~c, (80)

where we have denoted by Q (T€) the scalar component of the chiral quark super-
field @ (T€). Since the soft supersymmetry breaking terms are thought to arise from
an underlying supergravity [28), it is reasonable to assume that the higher dimen-
sion composite fields H; feel twice the breaking strength as do the individual Q or
TC fields. It is straightforward to prove that this is achieved when the Hj-explicit
supersymmetry breaking mass term is given by M3 = 2A? + §2.

In the presence of a condensate of top quark superfields, a dynamical mass for the
top quark is generated. Its value may be determined in a self consistent way by using
the Schwinger-Dyson equations in the bubble approximation. Note that, generalizing
the expression for the superfield propagators derived in ref.[29], there is a left-right
scalar quark propagator induced by the inclusion of the soft supersymmetry breaking
term 6. The gap equation is:

NcA? 2m? + §%a At 2m? A?
-1 _ i L e — ¢ —
¢ = 16w32 [(1+ 2A2 o (m? + A?)? — Myge A? tn mi ||

(81)




where G = g7, /m§ and a = m},c/(6m,) is given by

GM} 4
al=1+ Hivc In A, : (82)
32 (m? + A?)" ~ myq4e

The logarithmic term in Eq.(82) comes from the interactions induced by the explicit
scalar supersymmetry breaking mass term associated with the scalar field H;. The
gap equation takes a simpler form in the case in which this explicit mass term van-
ishes. In general, however, the critical value of the four Fermi coupling G may be
obtained by solving the above two coupled equations. The logarithmic dependence on
the compositeness scale A is a direct consequence of the supersymmetric nonrenor-
malization theorems [30]. The usual quadratic dependence on A, appearing in the
standard top-condensate models has been replaced by a mild quadratic dependence on
the supersymmetry breaking scales A and §. Thus, as we have already mentioned, no
fine tuning is necessary in this model.

In the scaling region, in which the four Fermi coupling constant is close to its
critical value, a gauge invariant kinetic term for H; is induced at low energies. In the
large N¢ limit, it is given by [17]):

Zn, /dVH,eWmTI',(l + Aof? + Aof + (247 + A2)6°F"), (83)

where Zg, is the H; wavefunction renormalization constant, which at a normalization
scale p is given by

2 2
_ gToNc A_
Zyg, = 1603 n T (84)

and Vg, = —Vg,. When p approaches A, Zg, tends to zero and H; has no independent
dynamics. For energies much lower than the compositeness scale A, instead, H;
appears as an independent dynamical degree of freedom. Rescaling the field H; —

H,(1 — A¢8?)/ ., /ZH,, so that it has a canonically normalized kinetic term, the low
energy model is given by

Tz =Tym+ [dV [@"’QQ + TCe ?TC 4 Bce-=Va‘E"] (1-A%°%8°) (85)
+ / dVH eV Hy(1 — M%6%0°) — / dSe; (mB{H{(1 + 66%) - hH]Q'T®)
- / dSe;; (mer';ﬁiu +68%) — h.TCQ“E;') + / dVH,e?Vm Hy(1 + 20%6°0%).

where we have defined the renormalized mass, m = mo/, /Zg,, and Yukawa coupling,

he = g1,/ /Zn,. Observe that, since mg and gz, have finite values, these renormalized
couplings 'diverge at the scale A. Once Hj is canonically normalized, the effective
supersymmetry breaking terms proportional to the bilinear and trilinear terms of the
superpotential are B = § and A = 0, respectively. The negative value of the induced



mass parameter for the scalar Higgs H, may generate the electroweak symmetry
breakdown in the low energy effective theory, even for the case B=0 (28]. However,
as mentioned above, a nonvanishing B is necessary in order to induce a nontrivial
vacuum expectation value for the scalar Higgs H;, and therefore the possibility of
giving masses to the bottom quarks and leptons of the theory.

The corrections induced by the inclusion of the gauge couplings may be obtained
by going to the RG method as in Section 3 [9],[17]. The effects of all the interac-
tions can be obtained by analyzing the modifications to the renormalization group
trajectories consistent with the compositeness condition, Zg, (s = A) = 0, which are
induced by their inclusion in the low energy theory. It is important to remark, that
although the cancellation of the supersymmetry breaking term A(u) at all scales is
only a property of the bubble sum approximation, the relation A(p)|lumsr = 0is a
prediction of the model.

The top quark mass value is given by m, = hi(m:)vy, where v; is the vacuum
expectation value of the scalar Higgs H;. The low energy value of the top quark
Yukawa coupling can be obtained by using the renormalization group flows in which
k¢ becomes large at the compositeness scale A. The relevant renormalization group
equations in the minimal supersymmetric model are given by [31]:

d 7/

2 —  —frn? 2 - 2 2 — 2

16« aln““?’ = —6maj 16~ 8lnp.az 27a; 16w 3lnp,dal 227aj
16 - ~ -~
16x? 9 Y, = —-8x%,(—as +3a, + Eal —-6Y.-Y,
Olnp 3 9
8 16 - ~ 7.

lsﬂzaln”Yb = —87I'2Y;, (?03 + 3(12 + 601 - 6}’5 - Yg) (86)

where o; = g} /47, a; = a;/4m, Y, = (hy/dr), Y, = (he/47)?. The solution to these
equations provides the renormalization group flow for energy scales Ag < p < A.In
general, if supersymmetry is broken at an energy scale Ag larger than the electroweak
scale, the low energy effective theory is equivalent to the standard model with one or
two light Higgs doublets, depending on the value of the mass parameters appearing in
the scalar potential. Hence, at scales below Ag, the proper renormalization group flow
is described by the solutions to the standard model renormalization group equations,
which are given by [13]

2 : ;)
161rzaln P ~l4ma; 16z’ aln“az=—2wﬂza§ 167? aln“a1=21rﬂ1af
9 24 9. 17. 9 o
2 = -8 zY' —_ - —_— ___Y__Y
16”aln”Yt ™ ¢(3a3+4az+12a1 AEERs
4. 9. 5_ 9. a
’ Y, = 8% (Fat @+ o - Y- SV 87
lswaln[tb ™ b(3aa+4a2+12a1 7% — 5 Y (87)

where B; = 3(19/6), B1 = 7(41/6), &, = 1(3), ¢ = 1(3) if there are two (one)
light scalar Higgs doublets. In the case in which only one light scalar Higgs doublet



¢ remains at low energies, it will be given by a combination of the original Higgs
doublets H; and H:
¢ = H; cos(0ar) + iro H; sin(fas) (88)

where 0y is the mixing angle. As we will show in the next section, when there is only
one light Higgs doublet below As the mixing angle tan(y) = R, where R = v,/v, is
the ratio of the Higgs vacuum expectation values. Hence < ¢ >T= (v,0), where v =

? + vi. The top and bottom Yukawa couplings appearing in the renormalization
group equation (87) are the effective couplings of the doublet ¢ with the top and
bottom quarks. These are related to the supersymmetric Yukawa couplings at the
scale As by h;” = hy cos(fp) and heft = p, sin(fpy).

For a compositeness scale A >> Mz and a supersymmetry breaking scale which is
of the order of the weak scale, an estimate of the top quark mass may be obtained
by using the supersymmetric infrared quasi-fixed point, h:(Mz) =~ , /2g3(Mz). This
yields a top quark mass approximately equal to m; ~ (196 GeV)R//1 + R?. Con-
sequently, if the ratio R ~ 1, the top quark mass can be significantly lower than the
values obtained in the model of Ref.[17].

A more accurate estimate of the top quark mass can be obtained by numerical
integration of the renormalization group equations, Eqs.(86)-(87). In Fig. 8, we show
the results of ref.[18] obtained for the top quark mass as a function of the ratio R for
three different values of the compositeness scale A and a supersymmetry breaking scale
Ag =1 TeV. In the numerical work, the compositeness conditions are imposed on
the top quark Yukawa coupling Y;(A)~! = 0. The boundary conditions for the gauge
couplings are chosen to be a3(Mz) = 0.115, a;(Mz) = 0.0336 and a;(Mz) = 0.0102
[18]. The low energy bottom Yukawa coupling was fixed by requiring the bottom
mass to be consistent with its experimental value m; ~ 5 GeV. The values of the
gauge and Yukawa couplings at a given energy scale yu are obtained by integrating
the renormalization group equations, asking for continuity at the supersymmetry
breaking scale As. The perturbative one loop renormalization group equations may
not be reliably used to determine the evolution of the Yukawa couplings at energy
scales p close to the compositeness scale A. Again the action of the infrared quasi-
fixed point makes the top quark mass predictions very insensitive to the precise high
value of the top quark Yukawa coupling at the scale A. A slight variation, of less
than 1% (2%), of the top quark mass value is obtained by setting Y;(A) = 0.1, for a
compositeness scale A > 10'® GeV (A > 10'° GeV).

As is apparent from Fig.(8), the minimal value of the top quark mass is obtained
for the lowest value of R. In general, the top quark mass values are insensitive to
whether only one or two light Higgs doublets appear in the spectrum. However, for
low values of R, the top quark mass predictions obtained if there are two light Higgs
doublets are slightly lower than those obtained for the one light Higgs doublet case.
As we will show in the next section, in the one light Higgs doublet case the ratio R
is bounded to be larger than one. In the two light Higgs doublets case, although for



characteristic values of the low energy parameters R > 1, R could be slightly lower
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than one.
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Figure (8): Top quark mass as a function of ratio R for a soft supersym-
metry breaking scale Ag = 1 TeV, and three values of the compositeness
scale A for the case of one light Higgs doublet (dashed line) and two light
Higgs doublets (solid line).

The top quark mass has the same qualitative behavior for the different values of
A and As. Since v3(R) = v,(R = I)R: LfZ-/(l + R?), the top quark mass is expected
to increase with R, tending to a constaht value for large values of R. Such behavior
is actually observed for low and intermediate values of R. However, since my = hyvy,
the bottom Yukawa coupling depends on R as follows

hy = hb(R = 1) (1 + R’)/2. (89)

Thaus, for larger values of R, the bottom Yukawa coupling becomes larger and the
infrared quasi-fixed point is reached for lower values of the top Yukawa coupling. In
addition, since v; varies only slightly with R in the large R regime, the top quark
mass decreases with R, a behavior that is clearly seen in Fig.(8). If R becomes too
large (R > 36 for A = 10'® GeV, h; becomes larger than the top Yukawa coupling. In
the computations an upper bound on R is set by.requiring the top Yukawa coupling
to be larger than A;.

An important result of these computations is that, if the compositeness scale
A ~10'® GeV(10' GeV), and Ag ~ 1 TeV, the characteristic top quark mass is 140



GeV < m, < 195 GeV, (160 GeV < m, < 220 GeV). Furthermore, the top quark mass
results obtained for A5 = 100 GeV are very similar to the ones obtained for Ag = 1
TeV. For Ag as large as 10 TeV, the top quark mass is shifted slightly towards larger
values. Therefore, the low energy predictions for the top quark mass obtained in the
analysis are stable under variations of Ag [18].

We mention that a potential problem for the supersymmetric composite-Higgs
models is that a large four Fermi coupling, ~ 1/A? is imagined to hold on scales
up to ~ A? and will potentially induce unitarity violations. In leading large-N the
unitarizations are performed in the bubble sums, but beyond this approximation the
models presented here are really prescriptions for a more general supersymmetric
theory, perhaps having a resemblance to a string theory. Whether the underlying
theory can generate the couplings required for the condensate models remains an
open question. We have not given a review of the phenomenology of the scalar sector
and we refer the reader to ref.[18].

7. Fourth Generation and Neutrino Condensate Schemes

Presently we wish to turn to schemes in which electroweak symmetry breaking is
driven by a condensate of conventional quarks and leptons, but the scale A of new
dynamics is not far beyond the electroweak scale. For such a scheme we must invoke
a fourth generation. This is apparent already in the analysis of section I, [9], in which
one sees that as A — 10 TeV then m, — 500 GeV, clearly incompatible with the
indirect limits. For a degenerate fourth generation quark doublet, the p-parameter
limits are not very stringent, and the mass of the fourth generation doublet can be
~ 1 TeV.

In a fourth generation scheme the issue of the non-observation of a fourth neu-
trino species at LEP and SLC must be faced. If right-handed neutrinos exist, then
the most natural explanation for the smallness of the observed left-handed neutrino
masses is the see-saw mechanism [33]: Small left-handed neutrino masses are nat-
urally explained by assuming (1) conventional Dirac mass terms for the neutrinos
linking left- and right-handed neutrinos and (2) a large Majorana mass term for the
right-handed neutrinos. No known gauge interaction is broken by the presence of
the large Majorana mass for the right-handed neutrinos. The sterility of the right-
handed neutrinos then ensures that the large mass hierarchy between the left- and
right-handed masses can be maintained without fine-tuning. After transforming to
mass eigenstates, the induced Majorana mass for the left-handed neutrino is of order
m%} /My, where mp is the Dirac mass and Mjs is the Majorana mass.

Thus, with regard to the non—observation of the fourth generation neutrino species
we find an intriguing possibility [34]. We assume the existence of a fourth generation,
and that: (1) all neutrinos have Dirac masses of order their charged lepton counter-
part and (2) all neutrinos have a large right-handed Majorana mass M of order the



electroweak scale. In this scenario, the see-saw mechanism assures that the (e, p,7)
neutrinos are light while v, is naturally heavy [34]. The fact that M can be taken
close to the electroweak scale has been emphasized by Glashow in the context of three
generations [35]. Thus, the LEP-SLC limits do not imply that there are only three
generations of quarks and leptons, even if “neutrino democracy” is invoked. These
assumptions also imply that the light neutrinos have masses not far from their current
experimental upper limits. In the simplest version which we present here there will
be a massive Majorana~Higgs boson and a massless “majoron” associated with the
spontaneously broken global right-handed neutrino number [36].

7.2 BCS Theory of the See—Saw Mechanism and the Majoron

We first illustrate the dynamical generation of a Majorana mass for right-handed
neutrinos in an NJL model, which contains N generations of right-handed neutrinos
VRj, where j is the generation index. The Lagrangian is:

L= I_/Rjial/ﬂj + Go(l—/ngRj)(-ﬁRngk) . (90)

where repeated indices are summed from 1 to N. Here ¢ denotes charge conjugation.
On scales above A the four-fermion interaction softens and is to be viewed to be
generated by some new interactions, such as a new gauge interaction. The theory
has a global SO(N)g x U(1) flavor symmetry. This theory can be solved exactly in
the large-V limit, and when G, exceeds a certain critical value, there is a vacuum
condensate:

(PRjvmj +hc) #0, (91)

which breaks the U(1), while preserving the SO(N) symmetry, and gives all of the
neutrinos a Majorana mass. In addition to giving rise to a Majorana mass, the
fact that the U(1) flavor symmetry is spontaneously broken implies that there is a
massless Nambu-Goldstone mode (the “majoron”) in the spectrum [36]. Also, there
is a massive collective mode analogous to the “o mode” in the NJL model which we
will refer to as the Majorana-Higgs boson. In the large-N limit it has a mass exactly
twice the neutrino Majorana mass, but there are significant corrections to this result
at small V or in the presence of additional interactions.

The solution to the theory defined in eq. (90) may be discussed in an effective
Lagrangian framework using the block-spin renormalization group. The renormalized
Lagrangian at scales u < A can be written: '

L, = 88'9,8 — M'3'® — %(q»f@)z
+ ijiaVRj +K (@ﬁgjllaj + h.c.) + e, (92)

where we have introduced the composite (rescaled, auxilliary) field . We can derive
the results of compositeness of ® from the usual one-loop differential RG equations



satisfied by the physical couplings. The results are:
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aln”‘n = (2N +4)s*, (93)
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The compositeness conditions are just those implied by the bare Lagrangian as in
section 3.1:

R(I") - °°|M—’A ’ (95)
A(t) = 00l - (96)

These may be taken as the boundary conditions on the solution to the RG equations.
The resulting renormalized coupling constants, s and A take the form:

N | A\ 72 N | A%\7!
K= (8—7;-2-111 F) ’ A = (64‘"-z ln ”—2) . (97)

Again, the fine-tuning of the gap equation is equivalent to demanding an approximate
cancellation between the quadratic divergence and the bare Higgs mass at A. Thus,
when u? — 0 we demand that M? — M}, the desired low energy value of the & mass.
The interesting physics predictions are then contained in the quantities A and Zg, or
equivalently, in A and .

The “predictions” of the model are obtained as follows. We assume (as a conse-
quence of our choice of fine-tuning) that the symmetry is spontaneously broken and
rewrite for ®:

® = (vs + %)e"‘/"* o (98)

where (®) = vs. Here, x is a massless Nambu-Goldstone mode, the majoron [36],
and ¢ is the Majorana-Higgs boson with mass:

my = 2\v} . (99)
Also, we see from the Majorana—Yukawa coupling to the neutrinos,
URiiPvr; + & (@vgjun,- + h.c.) , (100)
that we have a Majorana mass for the right-handed neutrinos:
mpayr = 2Kv3 . (101)

(Note that my is larger by a factor of two than what one naively expects. This comes
from deriving the equation of motion for the neutrino field from the Lagrangian, since



variations with respect to vz and gy are not independent.) By using the results for
A and & from egs. (2.14) and (2.15) we find that

my A '
— = ,[—=2.
. ne 22 (102)
This is the conventional Nambu-Jona-Lasinio result, but myy is now Majorana, rather
than Dirac.

7.3 Incorporation into a Realistic Model

A realistic effective Lagrangian similar to eq. (90) must contain the observed spec-
trum of quark and lepton masses and mixing angles. The model of ref. [19] contains 4
standard generations of quarks and leptons, together with 4 right-handed neutrinos.
At the scale A we have a four-fermion effective Lagrangian which may be represented
by introducing auxilliary fields H and ®. The fermions are assumed to have couplings
to the auxilliary field H given by:

LDirac = g,(-; VI;iHem + g,‘-,‘.’,’ LiiHves + g,(-:/ ) QriHure + g_.f-:) QuiHdps + h.c.
— MLy HH + ..., (103)

In addition, we assume that the right-handed neutrinos couple to the auxilliary field
&:
Lajorana = Kjk (@ﬁgjuﬂk + h.c.) - Mg,o@fQ +--- . (104)

Here we define Qr; = (ur dr)T (Lz: = (vi e1)T) to be the ith quark (lepton) elec-
troweak doublet, and H = o, H*. Note that 17,-01/,, = D',,uf implies xj = xg;. The
above ellipses refer to the possible “irrelevant” operators of d > 4, such as four-fermion
terms that are suppressed by 1/A? with numerical coefficients of order unity.

Ultimately H and  become dynamical fields at low energies and develop vacuum
expectation values. Through these VEV’s the quarks and leptons acquire Dirac mass
terms and the right-handed neutrinos acquire Majorana mass terms. The matrices g5
will determine the mass spectrum and the pattern of mixing angles in the hadronic
and leptonic weak currents.

We now consider the descent in the full theory to low energies in analogy to
our treatment of the BCS-Majorana theory in Section II. The most general induced
Lagrangian for both of the the scalar fields is:

Ls = Zu(D,H{D"H,)+ Z39,8}8"&, — MY H}H, — M3,8}8,
hY Y. -
- ?I(HJHO)z - %(@3@0)2 — A H{Ho®}3, . (105)

The RG boundary conditions can be derived using the same reasoning as in section
2. As p — A, we demand:

Z.;—»O,



N — 0, (106)

with all other couplings finite (and nonzero) in this normalization. The masses also
evolve as before, but now we assume that the low energy values are such as to trigger
the appropriate symmetry breaking as described below. In the physical normalization,
H= Z,l,/zHo; and ¢ = Z;/ 2®, the Lagrangian becomes:

Ls = D,H'D*H +8,3'6"6 — MLH'H — M18'®
- mtEy - i\zl(cbf@)ﬂ _AHH'S . (107)

with the physical coupling constants defined by:

A=A /2Z%,

Ay = Xl/Zgn

As = \/ZuZs,

Mlzi = Mgto/zﬂv
M = M3,/ Zs. (108)

The boundary conditions can therefore be rewritten as

K — oo,
z\,' — 00,
di, — oo. (109)

The masses M% and M} are tuned to have low energy values that are negative.
This is equivalent to demanding the symmetry breaking solution to the gap equa-
tions and thus trigger the formation of the vacuum expectation values of H and &.
Therefore, we simply parametrize these VEV’s at low energies:

<H°> =vg = 175 GeV; (®) = vp = Pog. (110)

where the parameter G is a priori arbitrary.
The Higgs—Yukawa coupling constants will have low energy values:

_ 1 ..
d-1 = -,,_H-dlag (Mey My, My, mEy) (111)
d(+2/3) — v"'l"diag (mu’ M, mt1mU4) (112)
H
d(-1/3) = —}—dia»g (md, M,y My, mD4) (113)

VH



For the neutrinos we make the assumption dg?) e dg," D for i = (1,2,3), while d
is determined by the RG equations. Here, mp,4 is the mass of the fourth generation
lepton, etc. All large coupling constants will be determined in this model in terms
of the scale A by using the RG equations with the assumption of the compositeness
boundary conditions. Taking d(®) = d(~) for the light neutrinos is our special as-
sumption of “neutrino democracy;” we certainly do not predict the three light-mass
generation Higgs—Yukawa couplings, but it is reasonable to expect the usual genera-
tional hierarchy to apply in the real world for neutrinos. Of course, we allow for the
overall scale difference, i.e., d(® = ed(-1) with 0.1 < e < 1.0 as in [34].

The low energy Majorana—Yukawa coupling constants are assumed all to be large
and will therefore all be predicted. We will find:

R = diag(m,m,m,nh) (114)

where x; refers to the light neutrinos. Hence the light three generations will have
approximately degenerate Majorana-Yukawa couplings. x; # &; arises because of
the renormalization effects due to the large Higgs—Yukawa couplings of the fourth
generation.

We begin by studying the RG equations that pertain to the fermion Dirac and
Majorana masses. In what follows we will shift notation for ease of writing the RG
equations. Let us define the matrices:

&V =Ey; =Ny gV = Uy o5 = Dy (115)

The full one-loop renormalization group equations for the coupling constant matrices
as defined above are:

2 — [ote(nt t t N\T t
167 T .2tr(n K.)+4mr.]n+(N N)'s +sN'N (1186)
2 = [Begt_3ynt t t
167 alnp.E 2EE 2NN +tr(E'E) + tz(N'N)
) ; no 15, 9,1
3 3
2 = 2NNt = 3EEt 1+ to(E t
165 51— N 3VN! = SEE! + t(E'E) + (')
+3tr(UUt + DDY) — z-gf - §g§+2nfn N, (118)
3 3 )
2 = |SUU! - 2DD' + x(EE") + (NN
167 alnp,U 5 2DD + tr(EE") 4 tf(NN1)
t t 17 29 , 2-
+3tr(UU' + DD') - 29~ 7% —8g;|U, (119)
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Here, g1, g2 and g3 are the U(1)y, SU(2)w and SU(3) gauge couplings, respectively.
Note that the RG coefficients can be computed in the massless limit. The Feynman
rules for vp then reduce to the familiar ones for two-component spinors. We have
given the equations for arbitrary complex coupling matrices, even though we will
assume that the matrices are real and diagonal in what follows.

To simplify the RG equations, we assume that the Yukawa coupling matrices are
real and diagonal, and satisfy

Ess > Ej; , Naa> Njj, Duu> Dj;, forj=1,2,38,
U44, U33 > Ujj for j = 1,2 . (121)

This is clearly a good approximation at low energies. The diagonal entries of &
are then split, or equivalently the SO(4) symmetry is broken. It is sufficient to
consider only the fourth generation x4 = K44 and the three light generation x; = &
independently.

The physical fermion Dirac masses are now determined as:

mys = Na(p)ve mg = Eu(p)ve (122)
my = Uyg(p)vr mp = Dys(p)vn %~ 100 GeV, (123)

while the Majorana masses are given by:
Myus = 28n(p)ve = 264(p)Bvm; M = 251(p)Bom, (124)

where again we choose g ~ 100 GeV as an approximation to the threshold condition
that determines the masses, i.e., m = g(m)v, but it is sufficient for our purposes.
Here, mg is the mass of the fourth generation charged lepton, and m,4 is the Dirac
mass of the fourth generation neutrino. My, is the fourth generation Majorana mass,
and Mjy is the Majorana mass of all other neutrinos.

The RG evolution of the light quark and lepton masses is irrelevant insofar as
the coupling constants are small. We therefore will use the known values of the
Dirac masses for these. For the light neutrinos we will follow [34] and assume that
the neutrino Dirac masses are given by m, = emp (e.g., for the muon we assume
my, = €,m,) where € is an arbitrary parameter.

The physically observable neutrino masses are then:

MR = % [MM+ ‘/Mfu+4mf-,] R Myl = % [MM— \/Mfl+4m§)} , (125)



with analogous formulas holding for the first three generations. For the case of the
light generations we may use the approximate forms:

mMmyRp ~ M( myr ~ Ezsz/Ml. (126)

The scalar quartic interactions satisfy analogous RG equations, and we refer the
reader to [19]. This analysis is close to that of Suzuki and Luty in considering a two
Higgs doublet version of the minimal scheme [37].
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Figure (9): Evolution of Higgs-Yukawa and Majorana-Yukawa coupling
constants with scale g from initial values g; = 6 at p = A = 108 GeV to
# = 100 GeV. The couplings are translated into masses by multplying by
vg as described in the text. The approach to the infrared fixed points is
demonstrated. The larger Majorana masses apply to the light generations.

In Fig.(9) we show the evolution of the Higgs-Yukawa and Majorana—Yukawa
coupling constants as a function of scale y evolving downwards from a compositeness
scale of A = 10° GeV. We have multiplied all Dirac couplings by vz, and Majorana
couplings by 2vg = 2vg corresponding to B = 1. The dashed lines represent the M,



M, and m,, as indicated, while m,g and m,, are the physically observable values.
The purpose of this Figure is to show the attraction from the large initial values down
to the low energy fixed points. In practice we used x; = d; = 6 at p = A, but the
resulting low energy values are very stable for a wide range of initial conditions. In
practice the fourth generation U and D quarks are degenerate to within a few GeV.

In Fig.(10) we show the fourth generation masses as a function of the scale of
new physics, A, for § = 1. We have indicated the lower limit m,;, > Mz/2 and we
thus see from the Figures that all schemes are ruled out for sufficiently large A, for
example, when # = 1.0 we require A < 10® TeV.
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Figure (10): Physical masses (solid lines) as predicted in the model as
a function of composite scale A, for § = vs/vg = 1.0. The dashed
lines indicate the heavy Majorana M, and neutrino~Dirac masses m,,
separately, before combining to form the physical combinations m,g and
myr,.

In order to make definite predictions, we assume throughout that m..,, = 130 GeV.
With the latter value of m, it is unnecessary to consider the evolution of g;p, which
we then treat as a constant independent of scale. All results are computed at the low



energy scale of p = 100 GeV for simplicity. The largest uncertainties in these results
arise from the uncertainty in the non-perturbative running of the Yukawa couplings
at high energies. As discussed earlier, this is essentially an uncertainty in the precise
high-energy boundary conditions.

In Fig.(11) we give the complete neutrino spectrum as a function of A for the case
€ = 1. Thus, the light neutrino masses as plotted are actually m,(B/€e?). Thus, for
€, = 0.1 one must multiply the plotted m,, by 0.01.
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Figure (11): Physical light neutrino masses (solid) as predicted in the
model as a function of composite scale A for 8 = vg /ve = 1.0 and we plot
- for the light masses the range 0.1 < ¢ < 1.0.

The neutrino phenomenology of such a model is expected to be fertile. This
requires some further assumptions about mixing angles which we cannot predict in
the model. Electroweak phenomenological constraints have also not been considered
here in detail. In fact, the “p—parameter” constraint should be fairly restrictive, since
the top quark mass is already quite sizeable. We have used the central value favored
by global parameter analyses of m; = 130 GeV in this analysis. The 90% c.l. upper
limit is of order ~ 192 GeV, so at this level we can probably tolerate a charged lepton



of order m; x (192% — 1302) ~ 240 GeV, which is a comfortable upper limit in
the present model, which predicts miepton ~ 182 GeV for A = 10* GeV and 8 = 1.0.

8. Conclusions

The main theoretical ideas we have discussed revolve around the notion that
conventional quarks or leptons play a fundamental role in the dynamical symmetry
breaking of the electroweak interactions. In particular, this provides in the minimal
scheme a raison d’etre for the existence of a heavy top quark with a mass of order
the weak scale. The predictions of the minimal scheme are completely robust, and
very insensitive to the details of the new pairing interactions. The price we pay in
such a scheme is the necessity of fine-tuning, which provides the large log(A?/m2),
and which ultimately controls the predictions of the model through the infrared fixed
points.

The predictions of the minimal scheme yield a top mass of order 230 GeV, which
is large compared to current experimental implications through radiative corrections
in the electroweak theory. Near future experiments at CDF and D0 will decide the
ultimate fate of the minimal top-mode standard model. Nonetheless, this has com-
pelled us to consider the supersymmetric scheme, which allows m, > 140 GeV, and
the fourth generation scheme, which does not predict m;. Both of these schemes have
their advantages and flaws. Primarily, they lack the simplicity of the minimal scheme,
but they illustrate the fact that the presence of extra degrees of freedom will generally
modify the predictions of the minimal scheme, while the general idea of conventional
quark and leptons condensates is preserved. There is much more to be done on the
theoretical side in this avenue. Electroweak symmetry breaking remains the foremost
mystery of particle physics, worthy of continued effort along many lines, including
the ideas discussed here.
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